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Recurrent Exposure Generation for Low-Light
Face Detection
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Abstract—Face detection from low-light images is challenging
due to limited photons and inevitable noise, which, to make the
task even harder, are often spatially unevenly distributed. A natural
solution is to borrow the idea from multi-exposure, which captures
multiple shots to obtain well-exposed images under challenging
conditions. High-quality implementation/approximation of multi-
exposure from a single image is however nontrivial. Fortunately, as
shown in this paper, neither is such high-quality necessary since our
task is face detection rather than image enhancement. Specifically,
we propose a novel Recurrent Exposure Generation (REG) module
and couple it seamlessly with a Multi-Exposure Detection (MED)
module, and thus significantly improve face detection performance
by effectively inhibiting non-uniform illumination and noise issues.
REG produces progressively and efficiently intermediate images
corresponding to various exposure settings, and such pseudo-
exposures are then fused by MED to detect faces across different
lighting conditions. The proposed method, named REGDet, is the
first ‘detection-with-enhancement’ framework for low-light face
detection. It not only encourages rich interaction and feature fusion
across different illumination levels, but also enables effective end-
to-end learning of the REG component to be better tailored for face
detection. Moreover, as clearly shown in our experiments, REG
can be flexibly coupled with different face detectors without extra
low/normal-light image pairs for training. We tested REGDet on
the DARK FACE low-light face benchmark with thorough ablation
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study, where REGDet outperforms previous state-of-the-arts by a
significant margin, with only negligible extra parameters.

Index Terms—Gated recurrent networks,
detection, multi-exposure.

low-light face

1. INTRODUCTION

S THE cornerstone for many face-related systems, face

detection has been attracting long-lasting research atten-
tion [22], [25], [44], [53], [55]. It has extensive applications in
human-centric analysis such as face recognition [10], [60]-[64],
person re-identification [8], [21], and human parsing [14]. De-
spite great progress in recent decade, face detection remains
challenging particularly for images under bad illumination con-
ditions. Images captured in low-light conditions typically have
their brightness reduced and intensity contrast compressed, and
thus confuse feature extraction and hurt the performance of face
detection. Poor illumination also causes annoying noise that
further damages the structural information for face detection.
To make things even worse, the illumination status may spa-
tially vary a lot within a single image. For systematic evalua-
tion of face detection algorithms under adverse lighting condi-
tions, a challenging benchmark named DARK FACE [56] is re-
cently constructed, which shows clear performance degradation
of state-of-the-art face detectors. For example, DSFD [28] pro-
duces an mAP of 15.3%, in a sharp contrast to above 90% on the
hard subset of the popular WIDER FACE [55] benchmark. The
dramatic performance degeneration of modern face detectors on
the DARK FACE dataset clearly shows that it remains extremely
challenging to detect faces under low-light conditions, which is
the main focus of this paper.

Naturally, one may seek help from low-light image enhance-
ment as preprocessing, as evidenced clearly by the experiments
shown in [56]. However, as illustrated in Fig. 1 (b-c), there is still
a large room for improvement. For one reason, image enhance-
ment aims to improve visual/perceptual quality for the entire
image, which is not fully aligned with the goal of face detec-
tion. For example, the smoothing operations for enhancing noisy
images could compromise the feature discriminability that is
critical for detection. This suggests a close integration between
the enhancement and detection components, and points to an
end-to-end ‘detection-with-enhancement’ solution.

Another reason lies in that the illumination in the original
image may vary greatly in different regions. Consequently, it
is hard to expect a single light-enhanced image to handle well
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(a) Low-light image (b) KinD [59]

Fig. 1.

(d) Ours

" () LIME [16]

Detection results of DSFD [28] on a low-light image (a) and its enhanced versions using KinD [59] (b) and LIME [16] (c). Green and red boxes indicate

true positives and missed targets, respectively. It can be seen that the improvement brought by lighting enhancement is very limited. By contrast, our result in (d)

(plotted on the same image of (c) for better visibility) show clear advantages.

facial regions under different lighting conditions in terms of de-
tection. This suggests the use of a multiple enhancement strategy
and brings our attention to the multi-exposure technique. In par-
ticular, when it is difficult to obtain a well-exposed image with
a single shot, the technique takes multiple shots with varying
camera settings. Such multi-exposure images are then fused for
light enhancement. Similarly and intuitively, we may generate
multi-exposure images and then detect faces from them to cover
different exposure conditions. However, automatically deriving
high quality multi-exposure images from a single image is non-
trivial [48], let alone a low-light image — but such high quality is
not required for face detection. It is the mechanism for capturing
information at different exposures that matters.

Driven by the above motivations, we propose a novel end-to-
end low-light face detection algorithm named REGDet. REGDet
contains two sequentially connected modules, a Recurrent Ex-
posure Generation (REG) module and a Multi-Exposure De-
tection (MED) module. From an input image, REG generates
a sequence of pseudo-exposures to loosely mimic the effect of
the highly non-linear process of in-camera multi-exposure. This
is done by assembling a set of ConvGRUs marching in two di-
rections: one direction points progressively and recurrently to
the degree of exposure, while the other guides encoder-decoder
structures to produce exposure compensated images. Then, these
pseudo-exposures are fed into MED, which adapts generic face
detectors so as to fuse ‘multi-exposure’ information of different
pseudo-exposures smoothly. With the two modules collaborated
together, REGDet not only encourages rich interaction and fea-
ture fusion across different illumination levels, but also enables
end-to-end learning of effective low-light processing tailored for
face detection. Moreover, as shown in our experiments, REG can
be flexibly coupled with different face detectors without extra
low/normal-light image pairs. We tested REGDet on the DARK
FACE low-light face benchmark with thorough ablation study. In

the experiments, REGDet outperforms previous state-of-the-arts
by a significant margin, with only negligible extra parameters.
To summarize, we make the following contributions:
® The first end-to-end ‘detection-with-enhancement’ solu-
tion, REGDet, for face detection under poor lighting con-
ditions,
® A novel and lightweight recurrent exposure generation
module to tackle the non-uniform darkness issue,
¢ A flexible framework compatible to existing face detectors,
e New state-of-the-art performance on the publicly available
benchmark.

II. RELATED WORK

The focus in this paper is on developing a learning solution for
low-light face detection. In the following we describe previous
studies from three aspects: low-light image enhancement, low-
light face detection, and gated recurrent networks.

A. Low-Light Image Enhancement

Low-light image enhancement has been a popular topic re-
cently for improving the perceptual quality of images. Early
solutions often rely on local statistics or intensity mapping, e.g.,
histogram equalization [2] and gamma correction [9]. Later so-
lutions are often based on the Retinex theory [26] which assumes
an image as a combination of a reflectance map that reflects the
physical characteristic of scene objects and a spatially smooth
illumination map. Thus developed solutions focus on resolving
the ambiguity between illumination and reflectance by impos-
ing certain priors on a variational model based on empirical
observations (e.g., [11], [12], [16], [29], [47]). More recently,
deep learning-based solutions boost further the image enhance-
ment quality. These recent methods often produce impressive
results for enhancing low-light images (e.g., [46], [49], [51],
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[59]). However, the performance gain, when applied to low-light
face detection, is still far from saturated [56]. As discussed in
previous section, this is partly due to their different goal with
face detection, dealing with uneven illumination inside a single
image, and weak collaboration with a face detection module.

The most related work to ours in low-light image enhance-
ment is the multi-exposure fusion-based method BIMEF [57].
BIMEF first synthesizes a brighter image by a Brightness Trans-
form Function (BTF) with fixed camera parameters, and then
blends it with the original low-light image into a better one. Our
method shares the idea of generating multi-exposure images,
but is driven by a very different goal, i.e., face detection. Conse-
quently our model is learned end-to-end for the goal. Moreover,
BIMEEF does not consider the inevitable noise in low-light im-
ages and does not leverage the powerful data-driven modeling
capacity of deep learning.

B. Low-Light Face Detection

With the advent of large-scale face detection datasets [22],
[25], [55] and the proliferation of deep learning technolo-
gies [13], [31], [32], [38], face detection in unconstrained
environments (a.k.a. ‘in the wild’) has made remarkable
progress [18], [20], [28], [36], [37], [41], [43], [58]. Most re-
cent technological developments have focused on robustness to
geometric variance. Typical geometric distortion includes scale
variation, deformation, occlusion and so on. To handle the pose
variation, many effective techniques have been proposed. For
example, synthesizing realistic profile faces for data augmen-
tation [10], [63], [64], jointly normalizing profile face images
to frontal pose and extracting pose invariant features [60]-[62].
For scale variation, researchers have proposed many effective
strategies based on the idea of multi-scale analysis: designing
image pyramids with different image scales [20], designing a
pre-defined set of anchor boxes with different sizes and aspect
ratios [23], [37], detecting at different layers of the network [36],
[58] and so on. Deformable part-based model improves deforma-
tion invariance by decomposing the task of face detection into
detecting different facial parts [54]. The idea of face calibra-
tion is explored to obtain deformation invariance in [41]. Spatial
context aggregation is a modern strategy for obtaining invari-
ant features. Existing context aggregation techniques include
enlarging receptive field by dilated convolution [6], multi-layer
fusion [42] and top-down feature fusion [28], [43].

Low-light face detection has been attracting research atten-
tion for a long time. In the era of hand-crafted features, en-
during efforts have been made to understand and handle the
non-uniform illumination issue [17], [27], [52]. Recently, there
are increasing interests in data-driven approaches for face de-
tection on low-quality images such as low-resolution images
and low-light images [35], [56], [65]. Illumination variation is
known to be a major challenge for modern face detection al-
gorithms [1], [65]. Pioneering approaches preprocess images by
intensity mapping such as logarithmic transform [1] and gamma
transform [40]. Photometric normalization is another commonly
adopted method that counteracts the varying lighting condi-
tions in hand-crafted feature [5], [52] and deep learning-based
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methods [32], [65]. Hand-crafted feature based methods derive
the illumination invariance from various priors such as image
differences or gradients [1], [17], while deep learning-based
methods use random photometric distortions as augmentation
to implicitly enhance the illumination invariance [28], [43],
[58]. Despite previous studies, face detection in extremely ad-
verse light conditions has been under explored, due partly to
the lack of high quality labeled data. Addressing this issue,
Yang et al. present a large manually labeled low-light face
detection dataset, DARK FACE, and show that existing face
detectors perform poorly on the task [56]. Our work is thus
motivated and evaluated on the benchmark, and outperforms
clearly previous arts. Baseline experiments have shown that, de-
spite of the outstanding success achieved nowadays, even the
best well-trained face detectors are less than ideal if the images
are simply pre-processed using existing low-light enhancement
methods [56].

C. Gated Recurrent Networks

Gated Recurrent Networks are the most related work to ours
from the learning aspect. Gated recurrent unit (GRU) in recur-
rent networks is a gating mechanism to adaptively control how
much each unit remembers or forgets for sequence modeling [7].
It was first proposed and applied to task of machine transla-
tion. ConvGRU [3] extends the fully-connected layers in GRU
with convolution operations to model correlations among im-
age sequence. The design of the REG module is greatly inspired
by [30]. However, the learning of the REG module is performed
with a proposed pseudo-supervised pre-training strategy and the
implicit guidance of a follow-up detection module instead of
ground-truth data. Moreover, instead of predicting rain streak
layer by residual learning, REB directly learns to generate vari-
ous pseudo-exposures.

III. THE PROPOSED METHOD

As shown in Fig. 2, the proposed REGDet involves two main
modules, the Recurrent Exposure Generation module (REG) and
the Multi-Exposure Detection module (MED). To loosely mimic
the complex and highly non-linear in-camera multi-exposure
process, REG generates progressively brighter images while en-
coding historical regional information. These pseudo-exposures
are then fed into MED to produce face bounding boxes. The two
modules are coupled together to form an end-to-end framework.

A. The Recurrent Exposure Generation Module

To progressively generate 1" pseudo-exposures from a low-
light input image [, a natural solution is to generate the next
image I;.1 by an NN conditioned on the previous image I;.
However, as there exists non-uniform darkness in low-light
images, such strategy could lead to locally over-smoothed or
over-exposed regions, and consequently hurt the face detection
task that relies seriously on discriminative details.

To address the above issue, the proposed Recurrent Expo-
sure Generation (REG) module leverages historical generated
images to maintain critical region details in a Recurrent Neural
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Multi-Exposure Detection module (MED)
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Fig. 2.

Network (RNN) framework. Starting from [ and initial hid-
den state Hy = 0, REG generates recurrently 7" intermediate
pseudo-exposures I = {1}, formulated as

(It7Ht) :gw(fﬂ(-[tflthfl))v t= 1727"'7T7 (1)

where Fy and G, denote the encoder and the decoder of the
proposed module, respectively, with corresponding parameters
0 and w. The encoder consisting of four cascaded convolutional
recurrent layers is responsible for transforming the input image
into features maps of multiple scales (layers), while the decoder
consisting of two convolutional layers learns to decode the fea-
ture maps back to images, as shown in Fig. 2.

Atstaget > 0, H, = {H'} ., where H! denotes feature map
from the [-th layer. Initialized by HY = I, 1, the feature maps
are produced by our recurrent exposure generation unit (REGU)
Flas

Hl =F'(H 7 H_,), 1=1,2,... L 2)

In particular, REGU is designed based on the Convolutional
Gated Recurrent Unit (ConvGRU) [3] for performance and
memory consideration, as shown in the right part of Fig. 2. An
REGU F! in the [-th layer can be described by the following
equations:

Zi=o0(W.«H ' +ULxH]_)), 3)
R, =0 (W} H '+ U« H{_), 4)

H} =tanh (W« H 7'+ UL« (RLo HL)),  (5)

Recurrent Exposure Generation module (REG)
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Recurrent Exposure Generation Unit (REGU)

The main framework of the proposed REGDet for low-light face detection.

H=(01-2Zz)oH,  +7Z o H, (6)
H} = ¢(A\(H})), (7

where Z and R are update and reset gates, respectively, which
decide the degree to which the unit updates or resets its histor-
ical encoding information, o () = H% is sigmoid function,
® denotes the Hadamard product, * denotes a convolution op-
erator, filters W and U are for dilated and regular convolution
respectively. £ denotes leaky ReLU [33] activation function

ar, x <0,
z, x>0,

{(z) = ®)

where a = (.2 denotes the negative slope. Given a feature map
H € RX*Y*C the channel-wise attention (CA) [45] A’ can be
computed as

ANH) = A (o(W x Ay (H)), H), ©)
where A, (H) = & Y2701 .| H;; is channel-wise global av-

erage pooling, W! denotes a 1D convolution kernel with kernel
size 3 and A, denotes channel-wise multiplication between the
feature map and the obtained channel weighting vector.

REGU has several extensions compared with the standard
ConvGRU. First, an important component in our REGU is the
channel-wise attention, which is integrated in each unit before
activation except for the last one. Like in other vision tasks [45],
such an efficient mechanism enables appropriate cross-channel
interaction inside a feature map and therefore helps aggregate
spatial global information and recalibrate the feature map at

Authorized licensed use limited to: Peking University. Downloaded on March 31,2022 at 02:07:35 UTC from IEEE Xplore. Restrictions apply.



LIANG et al.: RECURRENT EXPOSURE GENERATION FOR LOW-LIGHT FACE DETECTION

each step. Second, REGU uses leaky ReLU [33] as the acti-
vation function to alleviate the ‘dying ReLU’ issue, i.e., some
neurons going through the flat side of zero slope stop being up-
dated. Third, to tackle the issue of unevenly distributed darkness,
different dilation rates (2! in the I-th layer) are used in differ-
ent convolutional layers of the encoder to obtain progressively
larger receptive fields while maintaining small parameter cost.

B. Pseudo-Supervised Pre-Training of the REG Module

To enable good diversity and complementarity of the gener-
ated sequence, we adopt a pseudo-supervised pre-training strat-
egy which leverages pseudo ground-truth images corresponding
to different exposures. The pseudo ground-truth images { I, VL
are generated from I by a camera response model [57] that char-
acterizes the relationship between pixel values and exposure ra-
tios. A camera response model contains a camera response func-
tion (CRF), i.e., the nonlinear function relating camera sensor
irradiance with image pixel value, and a brightness transform
function (BTF), i.e., the mapping function between two images
captured in the same scene with different exposures [39]. Once
the parameters of CRF corresponding to a specific camera is
known, the parameters of BTF can be estimated by solving the
comparametric equation [34]. However, the information about
the cameras to estimate accurate camera response models is of-
ten far from enough in the publicly available low-light face de-
tection dataset. Therefore, we adopt the camera response model
proposed in [57] that can characterize a general relationship
between the pixel values and exposure ratios when no camera
information is available. Its BTF is in the form of Beta-Gamma
Correction

B(P, k) = e?(1=k*) p(k) (10)

where P and k denote the pixel value and the exposure ra-
tio respectively, and the camera parameters a = —0.3293,0 =
1.1258 are estimated by fitting the 201 real-world camera re-
sponse curves in the DoRF database [15]. Specifically, the ex-
posure ratios are k, ..., k”, where the base ratio is empirically
setas k = 2.4.

The REG module is then guided to generate images corre-
sponding to diversified exposures. To measure the distance be-
tween the generated image I; and the pseudo ground-truth I,
produced from I, with parameter k?, we use a combination of
¢1 norm and the Structure Similarity (SSIM) index [50] that
reflects the difference on luminance and contrast, which is for-
mulated as

A 1 ~
Lreg(I, 1) = 7 > (L =Ly +1—SSIMy), (1)
t

and the SSIM measure is defined as

(2H“Ptp’f7t + Cl)(20ﬁtpt + 02)
(5, + 15, + C1)(op, + 03, +Ca)’

where means p and deviations o are computed by applying a
Gaussian filter at pixel p, of image I; and N denotes the number
of pixels in the image. Following common practice in image
enhancement, we randomly crop 64 x 64 patches followed by
random mirror, resize and rotation for data augmentation.

SSIM = (12)
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TABLE I
RESULTS OF ABLATION STUDY ON THE PROPOSED REG MODULE. THE MAP IS
REPORTED AS PERCENTAGE (%)

Method DSFD [28] PyramidBox [43] S3FD [58]
#Params mAP  #Params mAP  #Params mAP
Baseline 47.49M  71.42 54.53M  72.48 21.42M  54.99
Ours-BEG  + 0.09M  75.60 +0.09M 76.11 +0.09M 56.78
Ours-CEG  + 0.09M 7407 +0.09M 73.16 +0.09M 54.30
Ours-SEG  + 0.03M 7352 +0.03M 74.19 +0.03M 52.82
Ours-REG  +0.12M 7694 +0.12M  77.69 + 0.12M  57.95

TABLE I

RESULTS OF ABLATION STUDIES ON DIFFERENT COMPONENTS OF THE
PROPOSED METHOD

pseudo-supervised joint training channel-wise filter mAP
pre-training with MED attention inflation (%)

v v 4 4 77.69

X v v v 76.36

v X v v 70.63

v v X v 76.70

v v v X 771.15

As the pseudo ground-truth images have inevitable noise and
artifacts, we adopt the early stopping strategy to prevent over-
fitting to those noise and artifacts. Specifically, the pre-training
stops when the average PSNR of I; compared to I, reaches
around 25. We use the training split of the DARK FACE dataset
to perform the pseudo-supervised pre-training. As our method
does not rely on any external low/normal-light image pairs, it
enjoys good scalability and can be fairly compared to other ap-
proaches. This pre-training practice can be expected to speedup
the joint training process and boost the final detection perfor-
mance. The performance comparison can be found in Table II.

To understand and verify the complementarity of the gen-
erated sequence from the REG module, we visualize them in
Fig. 3. The detection results on the generated images using
the pre-trained DSFD detector in the left four images show
good complementarity between different generated images, in-
dicating that the REGDet learns to generate a complementary
detection-oriented image sequence to benefit subsequent face
detection.

C. The Multi-Exposure Detection Module

Once the multiple pseudo-exposures [ are created by the REG
module, a straightforward strategy is to separately feed them into
a face detector and fuse their corresponding detected bound-
ing boxes, i.e., late fusion. This is however computationally ex-
pensive as it requires multiple runs of the detection process.
Instead, we introduce a resource efficient strategy to fuse the
low-level features extracted from I in early stage of detection.
Such strategy not only takes advantage of available pre-trained
face detectors, but also allows the collaboration among different
pseudo-exposures.

Specifically, the proposed Multi-Exposure Detector (MED)
module integrates a generic pre-trained CNN-based face detec-
tion algorithm, named base detector with early fusion. We tailor
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(a) Detect on Iy

(b) Detect on Io

Fig. 3.

(c) Detect on I3

(d) Detect on Iy (e) REGDet

The left four are detection results on intermediate 1, I2, I3 and I4 generated from the REG module, which show complementarity among the generated

images, supporting the effectiveness of our proposed REG module. Note these ‘images’ are linearly normalized for visualization so that the minimum (maximum)
value corresponds to 0 (255). The rightmost column shows our final detection result, where more faces (14 out of 15) are successfully localized, showing superiority
of the proposed MED module. Green and red boxes indicate true positives and missed targets, respectively. The zoom-in versions on the second row are enhanced

by LIME [16] for better visibility.

its first convolutional layer using filter inflation technique [4] in
the channel dimension so that the detector can simultaneously
process multiple images and perform adaptive integration, as
shown in Fig. 2. The weights of the 7" convolutional layers are
bootstrapped from the first layer in the pre-trained base detec-
tor, by duplicating and normalizing the pre-trained filter weights
T times, which helps maintain better discriminative and com-
plementary regional clues across different pseudo-exposures.
Formally, MED M simultaneously predicts the confidences
p = {p:} Y, and the bounding box coordinates g = {g;}~*, of
anchor boxes indexed by 1,2,..., N, as

(p,g) = M(I), (13)

where N, denotes the number of anchors, p; measures how
confident the i-th anchor is a face and g; is a vector representing
the 4 parameterized coordinates of the predicted face boxes.
Following [32], we use weighted sum of the confidence loss and

the localization loss:

I 1 A R R
L(p,p,9,9) = A Zﬁconf (Pmpi)JrF Zpiﬁloc (9i59i) »
¢y L

(14)
where NN, denotes the number of positive anchors, A is used to
balance the two loss terms, the ground-truth label p; represents
whether the i-th anchor is positive (a.k.a., is a face), and g;
is the ground-truth bounding box assigned to the anchor. The
confidence (classification) loss Lcont (s, P;) is a two-class (face
or background) softmax loss,

Leont (pi,pi) = pilog (p;) + (1 —pi)log (1 —ps), (15)

where the p; in the second term means that the localization loss
is only calculated for those positive anchors. Following [13], the
localization loss Lio¢ (i, §;) is defined as the smooth ¢; loss, i.e.,
the distance between the predicted box ¢; and the ground-truth
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g; measured by Huber norm

Lo lgig) = > H(a”=3"), a6
je{z,y,h,w}
where the Huber norm #(+) is defined as
_f 05z% iffz[ <1
H(w) = { |z| — 0.5 otherwise . n

The Huber norm is less sensitive to outliers than the ¢ norm.

Being an end-to-end system, REGDet allows joint optimiza-
tion of the REG and MED modules during learning. Intuitively,
MED provides facial location information to guide REG such
that the facial regions could be specially enhanced for the pur-
pose of detection. An example detection result is shown in the
rightmost column of Fig. 3, and it shows that REGDet success-
fully localizes far more faces than simply applying the base
detector on different intermediate images. It is worth noting that
MED is flexible in choosing the base detector. In our experi-
ments, several state-of-the-art algorithms such as DSFD [28],
PyramidBox [43] and S3FD [58] all demonstrate clear perfor-
mance improvement when embedded in REGDet.

IV. EXPERIMENTS

A. Setup

1) Dataset and Metric: We adopt the recently constructed
DARK FACE dataset [56] as our testbed. 6000 real-world low-
lightimages captured under extreme low-light environment. The
resolution of the images is 1080 x 720. Totally 43 849 manu-
ally annotated faces are released. The annotated faces have large
scale variance, ranging from 1 x 2 to 335 x 296. There are usu-
ally 1 to 20 annotated faces in an image. Since the original test
split [56] is withheld, we randomly leave 1000 images as our
test set. Figure 5 shows the distribution of face number and
face resolution in the train/test splits. Following prior work [28],
[43], [58], face detection performance is measured by mean Av-
erage Precision (mAP), which is calculated as the area under
precision-recall curve.

2) Network Architecture: To benefit from the publicly avail-
able pre-trained models, we build up REGDet on the base detec-
tors pre-trained on the existing largest dataset for face detection
in the wild, i.e., WIDER FACE [55] dataset. DSFD [28], Pyra-
midBox [43] and S3FD [58], the state-of-the-art methods that
achieve remarkable performance on WIDER FACE, are chosen
as the base detectors. The weights of REGDet are initialized and
bootstrapped as described in Section III-B and III-C. For repro-
ducibility, we adopt public implementation of the base detectors
with VGG-16 backbone network, which are all implemented
with the PyTorch library. For scalability, the configurations of
anchor design, sample matching, optimization and inference for
different base detectors are set as suggested in the original pa-
pers [28], [32], [43] unless otherwise specified. For the proposed
REG module, we set the number of stages asT" = 4 and the num-
ber of REGU blocks as L = 4.

3) Data Augmentation: During training, for all methods we
randomly crop image patches with random scales and then resize

1615

them to 640 x 640. To construct a model more robust to com-
monly seen variations, we adopt data augmentation schemes
such as random patch sampling and random flipping follow-
ing [32]. For our proposed REGDet, the random photometric
distortion in data augmentation is removed as it has already
involved an enhancement module. Note that we keep the photo-
metric augmentation for the baselines following [28], [43], [58]
for fair comparison.

4) Anchor Design: The anchor scales are the same for all
the three base detectors at the inference stage, i.e., 16, 32, 64,
128, 256, and 512. Following the baselines, we set the anchor
ratio as 1:1 for S3FD and PyramidBox, and 1.5:1 for DSFD. The
designed anchors cover a wide range of face scales, specifically,
from faces with around 16 x 16 pixels to faces with around
512 x 512 pixels.

5) Hard Negative Mining: After the anchor matching step,
a large number of negative anchors are produced, which causes
significant imbalance between the positive and negative train-
ing samples and poor convergence performance. To address this
issue, following [32], hard negative mining is adopted to select
the negatives with highest cost in the training phase and make
the ratio between the negative and positive anchors below 3:1.

6) Optimization: The models are trained with a batch size of
16 for 120 epochs. We adopt SGD with momentum of 0.9 to train
the MED module. Annealing learning rate initialized with 0.001
and decay factor of 0.1 (decayed at the 64-th and 96-th epoch)
are used for training the MED module following the common
practice. The adaptive moments [24] (Adam) with default pa-
rameter setting is adopted for training the REG module, since
it has shown promising results for training NNs with recurrent
architecture.

7) Inference: During inference, the image is first rescaled to
make v H x W = 2000, where H and W denote the height
and width of the test image respectively. The boxes output by
the proposed method are firstly filtered out by a confidence
threshold of 0.01 and keep the top 5000 boxes before apply-
ing non-maximum suppression (NMS). Then NMS is applied
with Jaccard overlap of 0.3 and the top 750 bounding boxes are
kept.

8) Compared Methods: We compare REGDet against vari-
ous face detectors with illumination pre-processing using the
state-of-the-art low-light image enhancement approaches in-
cluding MF [11], SRIE [12], LIME [16], BIMEF [57], GLAD-
Net [49], RetinexNet [51], RRM [29], DeepUPE [46], and
KinD [59] to preprocess the images. Baseline denotes the plain
detector fed by the original low-light images as input. We eval-
uate all the aforementioned approaches with both pre-trained
and finetuned version. The pre-trained version directly uses the
pre-trained weights on WIDER FACE and performs inference on
pre-processed DARK FACE images using the aforementioned
methods. The finetuned version further finetunes the model us-
ing pre-processed DARK FACE images as input. As the perfor-
mances reported in [56] are for the withheld test data split with
only pre-trained version, we re-train the aforementioned meth-
ods on our train split and fairly compare them on our 1000-image
test split.
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Fig. 5. Face resolution (FR) and face number (FN) distribution in train and
test splits.

B. Result Analysis

The quantitative comparison of different approaches is shown
in Fig. 6. The three pre-trained baseline detectors achieve results
of 32.69%, 31.00%, and 26.58% mAP respectively. The rela-
tive performance disparity among the three detectors are con-
sistent with their performance on WIDER FACE. The former
two detectors perform much better as they apply modern con-
text aggregation techniques such as feature enhancement using
two shots [28] or context assisted pyramid anchors [43]. Com-
pared with the pre-trained detectors, all finetuned ones achieve
much higher performance, indicating that the existing large-
scale dataset WIDER FACE dominated by normal-light images
carries very different lighting distribution compared to DARK
FACE dataset. Compared with original image input, many of the
image enhancement approaches improve the face detection per-
formance. Specifically, the pre-trained detectors equipped with
pre-processing using MF, LIME, BIMEF, DeepUPE, GLAD-
Net, and SRIE outperform the baseline with respectively 4.87%,
5.08%, 5.33%, 4.60%, and 0.45% performance gain when using
DSFD as the base detector. In the finetuned setting, MF, LIME,
BIMEF, and DeepUPE improve the baseline with respectively
1.12%, 0.94%, 1.75%, and 1.05% performance gain when us-
ing DSFD as the base detector. While these image enhance-
ment methods show clear advantages over the baseline with the
pre-trained setting, they achieve less performance gain in the
finetuned setting, as finetuning already greatly reduces the data
distribution discrepancy between normal-light and low-light im-
ages. However, it is noticeable that KinD, RetinexNet, and RRM
cause performance degeneration to different extents due prob-
ably to the severe over-smoothness (KinD, RRM) or artifacts
(RetinexNet) on regions containing faces (also evidenced by
Fig. 4. Among them, the multi-exposure fusion method BIMEF
performs best. The relatively good performance of BIMEF may
also imply that it is promising to adaptively generate pseudo ex-
posures with different light conditions, which is consistent with
what we explored in this paper. In particular, compared with the
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finetuned baseline on original images equipped with photomet-
ric data augmentation [19], the proposed REGDet shows much
higher detection mAP with respectively about 5.5%, 5.2%, and
3.0% performance gain using the three base detectors, with neg-
ligible extra parameters (as shown in Table II). The overwhelm-
ingly high detection rates of REGDet demonstrates its superior-
ity over existing state-of-the-arts.

The qualitative results of different approaches on sampled
images from DARK FACE are shown in Fig. 4. While those
large and clear faces can also be detected by other methods,
our method has successfully found much more dark and tiny
faces, as pointed out by the red arrows in the presented images.
Although it is hard to detect those faces even by human eyes,
the proposed method is able to localize most of them and clearly
outperforms other approaches.

C. Ablation Studies

1) Model Design of the Recurrent Architecture: To examine
the effectiveness of the proposed recurrent component, variant
generation modules are designed as illustrated in Fig. 7, which
includes

¢ Branched Exposure Generation (BEG) This module

generates different exposures /; parallelly from the original
image Iy by a module with 7" branches,
¢ Chained Exposure Generation (CEG) The ¢-thimage is
generated at the ¢-th stage of the module with non-shared
weights conditioned on the image I; ; generated at the
(t — 1)-th stage,

¢ RecurSive Exposure Generation (SEG) Similar with
CEG, except that the module shares parameters at different
stages,

¢ Recurrent Exposure Generation (REG) The module

used in our proposed method. Different from the afore-
mentioned modules, REG encodes historical feature maps
in order to alleviate the probable unrecoverable informa-
tion loss caused by the over-exposure and over-smoothness
at the middle stages. The detailed description of the REG
module is provided in Sec. III-A.

We replace REG with BEG, CEG, SEG respectively and con-
duct experiments on DARK FACE. As shown in Table I, all
the designed lightweight modules introduce merely a few extra
parameters while they almost all achieve improved detection re-
sults. BEG constructs multiple branches from the original image
Iy to generate different pseudo-exposures in parallel, and clearly
boosts performance, indicating that the MED module does pro-
vide important guidance to the enhancement module for generat-
ing complementary information in different pseudo-exposures,
as illustrated in Sec. III-C. In contrast, CEG and SEG that gener-
ate I; conditioned on I;_; with non-shared and shared weight, re-
spectively, produce not so stable performance gain, due probably
to unrecoverable information loss caused by the over-exposure
and over-smoothness at the middle stages. This suggests that a
proper modeling of the multi-exposure generation is the key to
achieve good face detection performance. For the performance
of using S3FD as base detector, Ours-CEG and Ours-SEG only
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Quantitative results of different approaches are shown. All the other approaches have both pre-trained version (marked with subscript ‘P’) and finetuned
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Fig. 7.  Alternative pseudo-exposure generation modules.
achieve comparable or even decreased detection rates. We con- " o
jecture that the reason of the inferior performance is that S3FD 7 78
_ ./._/0———0-\.-——¢
has much less parameters and consequently much smaller model £ £
capacity compared with DSFD and PyramidBox, resulting in I Ee
insufficient guidance effects for the generation modules. By en- 72 72
coding historical feature maps, the proposed REG alleviates the 70 7
issue and performs the best. It indicates that the relationship T ey ° vtz 3 4 5 6
number of number of stage

between adjacent pseudo-exposures could be well modeled by
maintained memory in the recurrent structure of REG. The con-
sistent performance boost also demonstrates the scalability of
REG across different base face detectors.

2) Pseudo-Supervised Pre-Training: The REG module is su-
pervised and guided to generate images corresponding to di-
versified exposures with the designed pseudo-supervised pre-
training. We provide experimental comparison on whether ap-
plying the proposed pseudo-supervised pre-training on the REG
module or not. The performance of the resulted REGDet us-
ing PyramidBox as base detector are shown in Table II. When
randomly initializing the REG module (w/o pre-training), the
proposed REGDet remains good performance with an mAP of
76.36%. Equipped with the proposed pseudo-supervised pre-
training technique, our method achieves the best performance
with 1.33% absolute performance gain.

3) Joint Training With MED: The ability of generating im-
ages with diverse levels of exposure is not enough. For im-
ages captured under different lighting conditions, the accord-
ingly proper level of exposure is also different. Moreover, it is
not clear what characteristics of images can help face detection
more. A direct guidance signal coming from the face detector
could be helpful, which can be implemented by jointly training

(a) mAP vs. number of REGU (b) mAP vs. number of stage

Fig. 8.  Sensitivity studies on the hyper-parameters.

with MED. To verify its effectiveness, we freeze the weights of
the pre-trained REG module, i.e., without jointly training with
MED. The corresponding result is reported in the third row of
Table II. There is a dramatic performance degeneration without
jointly training, specifically, 70.63% vs.77.69%.

4) Channel-Wise Attention: In the proposed REGU,
channel-wise attention enables appropriate cross-channel
interaction inside a feature map. As shown in Table II, the
channel-wise attention leads to performance gain of about 1%
mAP.

5) Filter Inflation: We tailor the first convolutional layer of
the detector using filter inflation technique [4] in the channel
dimension so that the detector can simultaneously process mul-
tiple images and perform adaptive integration. The weights of
the T" convolutional layers are bootstrapped from the first layer
in the pre-trained base detector, by duplicating and normalizing
the pre-trained filter weights 7" times. The corresponding abla-
tion is shown in Table II. Applying filter inflation results into
0.54% mAP gain.

Authorized licensed use limited to: Peking University. Downloaded on March 31,2022 at 02:07:35 UTC from IEEE Xplore. Restrictions apply.



LIANG et al.: RECURRENT EXPOSURE GENERATION FOR LOW-LIGHT FACE DETECTION

1619

09 |

DSFD-0.966
0x-0.96]

.949

0.949
R-FCN-0.947
0.937

Face R-CNN-0.937

06 [ B
Face R-CNN-0.921
SSH-0.921

SSH-0.931
HR-0.925
MSCNN-0.916

Precision
=
Precision
=

T X
ACF-WIDER-0.541

08 |

s DSFD-0.904
F, 94

0.7 H

0.6

05

Precision

0.4 1

0.3 H

02 H

0.1

L s L s L
0 0.1 0.2 03 04 05 0.6 0.7 08 09 1 0 0.1 0.2 03 04
Recall

(a) Val: Easy

Fig. 9.

D. Hyper-Parameter Analysis

1) Numbers of REGU Blocks: There are L = 4 REGU blocks
in the REG module. Generally, increasing the number of REGU
blocks increases the capacity of the model as well as the com-
putational costs associated with the model. Moreover, overfit-
ting might occur when L is too large. To study the effect of the
hyper-parameter L, we conduct several experiments using Pyra-
midBox as base detector. The results are shown in Figure 8(a).
We find that increasing L consistently improves the results when
L < 5, and achieve a best mAP of 78.79% when L = 5. To
tradeoff between effectiveness and efficiency, we set L = 4 in
all other experiments.

2) Numbers of Stages: We conduct experimental compar-
ison of different numbers of stages 7' for the REG mod-
ule using PyramidBox as base detector. The results are
shown in Fig 8(b). Setting 7' =1 is equivalent to a special
case of REGDet, namely, a single-exposure ‘detection-with-
enhancement’ model. It achieves much higher detection perfor-
mance (mAP) than the finetuned baseline (72.48%), but achieves
inferior result than the multi-exposure frameworks (7" > 1).
On one hand, it supports the claim that jointly performing en-
hancement and detection is superior compared to plain detec-
tion for low-light face detection. On the other hand, it verifies
the superiority of the proposed multi-exposure framework over
single-exposure framework. Setting " = 4 achieves the best per-
formance, indicating that it is a good practice.

E. More Analysis

1) Results on WIDER FACE: Inthis paper, we aim at face de-
tection in low-light conditions, which might be the most com-
monly seen one among various poor visibility environments.
However, the proposed method is also applicable for more
general cases, e.g., a model with robustness to large illumi-
nation variation. To evaluate the performance of the proposed
method for real-world scenarios covering more general light-
ing conditions, we use a mixture of the WIDER FACE dataset
(normal-light) and the DARK FACE dataset (low-light) to train
our REGDet with PyramidBox as base detector.

The results on the WIDER FACE dataset are shown in
Figure 9. Our method is denoted as ‘REGDet-PyramidBox’.

(b) Val: Medium

05 0.6 0.7 08 0.9 1 0 0.1 02 0.3 0.4 05 0.6 07 08 0.9 1
Recall Recall

(c) Val: Hard

Precision-recall curves on the WIDER FACE validation set.

TABLE III
TRAINING AND TESTING COMPUTATIONAL COMPLEXITY

Base Detector Training time (h)  Test time (ms)  FLOPS (G)
DSFD [28] 22.59 341 520.92
PyramidBox [43] 21.89 338 715.04
S3FD [58] 13.24 301 435.32

The corresponding baseline model is denoted as ‘PyramidBox-
VGG, which is re-implemented based on the same VGG-16
backbone and test protocol as our method for fair compari-
son. Intuitively, REGDet cannot be expected to outperform the
latest methods that are built upon backbone with larger model
complexity, e.g., ResNet-152, or multi-scale testing, and trained
on the pure WIDER FACE train split that have much smaller
distribution discrepancy with the test data. Still, our proposed
model achieves comparable or even better performance com-
pared to the baselines ‘PyramidBox-VGG’. Specifically, com-
pared to the baseline, the proposed method bring a perfor-
mance gain of 1.1%, 0.8%, and 0.7% mAP respectively on the
easy/medium/hard subsets of WIDER FACE despite of the dis-
crepancy of data distribution. On the low-light dataset DARK
FACE, REGDet-PyramidBox achieves an mAP of 73.86%. The
empirical performances indicate that our proposed REGDet has
good robustness to large illumination variation.

2) Training and Testing Computational Complexity: For
training, it takes about 22 hours on a server with 8 Tesla V100
GPUs when using a batch size of 16 for 120 epochs. For testing,
it takes about 0.3 s to process an input image of VGA-resolution
(640x480). The computational complexity based on different
base detectors is summarized in Table III. The test time is ob-
tained by averaging from 10 runs on a single Titan RTX GPU.

V. CONCLUSION

In this work we proposed an end-to-end face detection frame-
work, named REGDet, for dealing with low-light input images.
The key component in REGDet is a novel recurrent exposure
generation (REG) module that extends ConvGRU to mimic the
multi-exposure technique used in photography. The REG mod-
ule is then sequentially connected with a multi-exposure detec-
tion (MED) module for detecting faces from images under poor
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lighting conditions. The proposed method significantly outper-
forms previous algorithms on a public low-light face dataset,
with detailed ablation study further validating the effectiveness
of the proposed learning component.
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